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We study numerically the behaviour of and interaction between Burgers vortices - 
a known equilibrium solution to the Navier-Stokes equations which incorporates a 
balance between viscous diffusion and strain intensification of vorticity. A hybrid 
spectral/finite-difference method is employed to solve the Navier-Stokes equations 
in vorticity-stream function form for a unidirectional vorticity field on an infinite 
domain in the presence of a uniform three-dimensional strain field, one principal axis 
of which is parallel to the vorticity. Merging of two strained vortices is studied over 
a range of Reynolds numbers Re = I'/2rcv = 10-1280, and the results are used to 
calculate an energy spectrum for three-dimensional, homogeneous turbulence. The 
cancellation of two strained vortices with opposing circulation is investigated for 
Reynolds numbers Re = r0/27cv = 0.1-160 (ro is the circulation about one vortex), 
over a range of strain rates in the direction parallel to the line joining the vortex 
centres. A solution of the Navier-Stokes equations describing vorticity cancellation 
in the strain-induced collision of vortex layers (Kambe 1984) is used to  estimate the 
asymptotic, timewise decay of circulation for each vortex. Good agreement with the 
present numerical results is obtained. Vortex core pressures calculated during 
the cancellation event are compared to a simple analytical model based on Moore & 
Saffman (1971). 

1. Introduction 
Central to the processes believed to occur in turbulence is the idea of the compact 

vorticity field and the transport of energy between scales of motion provided by the 
action of vortex stretching. For this reason, the behaviour of finite regions of 
vorticity in an inviscid fluid has received considerable attention. Omitting the 
viscous terms in the Navier-Stokes equations gives the much-studied inviscid Euler 
equations. Moore & Saffman (1971) found steady solutions of the incompressible 
Euler equations for finite-area, constant-strength vortices in an inviscid fluid 
subjected to  a two-dimensional, irrotational strain field. Kida (1981) and Neu 
(1984~)  have extended this to  unsteady flow and a three-dimensional strain which 
stretches vortex lines. Deem & Zabusky (1978) developed the contour-dynamics 
approach to study the interaction of finite-area vortices of like signs. Jacobs & Pullin 
(1985) combined both the interaction of finite-area vortices and a three-dimensional 
strain field to model processes (in the inviscid limit) believed to occur in the transfer 
of energy between flow structures at very high Reynolds numbers. 

Viscosity complicates the solution of the NavierStokes equations for vor- 
ticity-strain field interaction a t  high Reynolds numbers owing to  the necessity to 
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resolve dissipation scalcs, and limited results are available. Lundgren (1982) used an 
asymptotic analysis of viscous spiral vortices in a stretching, axisymmetric strain 
field to obtain an energy spectrum for homogeneous turbulence, while Kambe (1984) 
found an analytical solution describing the cancellation of vortex layers embedded 
in three-dimensional strain. Vortex interactions in an unstrained flow have been 
studied in detail by Melander, McWilliams & Zabusky (1987) who considered very 
high-Reynolds-number behaviour of vortices through the introduction of a 
hyperviscosity term used to suppress small-scale motions. 

An exact solution of the Navier-Stokes equations (Burgers 1948) describes a 
steady equilibrium between the action of viscous diffusion and vortex intensification 
caused by a strain field with one principal axis aligned with the vorticity. The 
solutions take the form of a cylindrical vortex when the strain field is circularly 
symmetric and a vortex layer when the strain field is planar. Robinson & Saffman 
(1984) extended Burgers’ result to  vortices in a non-axisymmetric strain field. 

Townsend (1951) used ensembles of stretched vortices to  model the fine scalcs of 
turbulence. I n  studying the dynamics of strained streamwise vortices in the mixing 
layer, Lin & Corcos (1984) (see also Corcos & Lin 1984; Corcos & Sherman 1984; Neu 
19846) observed the formation of compact, nearly axisymmetric vortices embedded 
in the strain field of the primary vortex array. Perry & Chong (1982) obtained 
predictions of mean and turbulence flow properties for wall-bounded flows using 
hierarchies of strained horseshoe vortices. In numerical solutions of three- 
dimensional Navier-Stokes turbulence, Ashurst et al. (1987) find alignment between 
the vorticity and one principal axis of the local strain. Vortex stretching appears 
to play an important role in vortex reconnection events of the type studied 
experimentally by Schatzle (1987) (see also related numerical simulations by 
Leonard & Wincklemans 1988; Meiron, Orszag & Shelly 1988). Giggia & Pumir (1988) 
find extremely large self-stretching of a vortex tube following pairing of tube segments 
with antiparallel circulation, suggesting complex local processes involving com- 
petition between vortex stretching, viscous cancellation of vorticity, and inertia. 

In the present paper we consider separately the merger of, and the mutual 
cancellation of, strained vortex pairs in a viscous fluid. Our aim is to study the 
properties of these fundamental types of vortex interaction and to elucidate their 
possible role in some aspects of turbulence mechanics. Section 2 outlines the equations 
governing the behaviour of an initial distribution of vorticity subjected to a three- 
dimensional, uniform (possibly time-varying) strain field with one principal axis 
aligned with the vorticity, in an infinite two-dimensional domain. A solution 
method is given in $3  which incorporates a hybrid spectral/fourth-order finite- 
difference scheme to  solve the governing equations mapped onto a finite domain. 
This has the advantage of eliminating the need for periodic or approximate boundary 
conditions required when a finite computational region is employed. 

In $4 we examine the merging of two Burgers vortices a t  Reynolds numbers 
ranging from Be = f/2m = 1-1280. By replacing an ensemble average with a time 
average over an individual merging event, the energy spectrum of a homogeneous 
turbulence field comprising pairing Burgers vortices is calculated. Cancellation of 
two Burgers vortices with equal strength but opposite sign is considered in $ 5 ,  wherc 
the dependence is explored of the evolution, and in particular the vortex cancellation 
time, on both Reynolds number (Re = 0.1-160) and compressive strain in the 
direction joining the vortex cores. 
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2. Problem definition 
2.1. Governing equations 

Both cylindrical polar and Cartesian coordinate systems are used; The cylindrical 
coordinates and their corresponding unit vectors a? Jr,O, z )  and (t, 8, k) respectively. 
For Cartesian coordinates, they are (z, y, z )  and ( i j ,  k). These systems are related 
through, 

x = rcos8, y = rsine, (2 . la ,  b )  

All flows considered possess unidirectional vorticity 

w = w ( r ,  8 )  k. (2.2) 

The vorticity is subjected to a three-dimensional straining flow with one principal 
axis of strain aligned with W .  The full velocity field is written as 

u(r ,  e,  2, t )  = V ( T ,  e, t )  + u,, (2.3) 

where the first term is the vortex-induced velocity which lies entirely in the ( r ,  8 )  (or 
(z,y))-plane and the second term, us, is the uniform strain field 

us = -P(t)z: i+[p(t)-y(t)]$+y(t)zk, (2.4) 

where P(t) and y( t )  are strain rates. They are assumed to be known functions of time. 
Substituting (2.2)-(2.4) into the vorticity transport equation gives a simplified 

form 

(2.5) 
ao 
-+V*(uw)  = yw+uv2w. at 

Since the fluid is incompressible, a stream function $(r,  8, t )  associated with the v- 
motion can be defined, where 

VZ@ = -0,  (2.6) 

(2.7) D = V A ($k). 

Most subsequent discussion will deal with the equations given above in cylindrical 
coordinates. The strain field, us is then 

us = -$[(2p-r) c o s 2 e + y l i + ~ ( 2 ~ - y ) s i n z e B + y z ~ ,  (2.8) 

and the velocity associated with the vorticity field is 

Hence the vorticity transport equation becomes 

aw aw i aw 

The components of (2.3) are 

U, = v,.-~r[(2p-y)cos20+y], 

ug = vo+$r(2P-y)sin28, 

(2.10) 

(2.11) 

(2.12) 
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while the Poisson equation is 
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(2.13) 

The problem is to  solve (2.10)-(2.13) numerically with given y(t),  P(t) and subject 
to initial and boundary conditions on the vorticity field given by 

w ( r ,  0, t = 0 )  given, (2.14) 

w( r -+ co , 0, t )  + 0, t 2 0. (2.15) 

Specific initial conditions will consist of several (two) concentrations of vorticity 
which may initially be identified as separate ‘vortices ’. Flows considered will include 
thosc for which the global (conserved) circulation, 

r = lom 1; W ( T ,  0, t )  r dr d8 = constant, (2.16) 

may be finite or zero. 
If it is assumed that the vorticity decays like a Burgers vortex a t  large distances 

from the origin (i.e. w - exp ( -kr2 ) ,  as r +  CO, where k is some constant), the solution 
of the Poisson equation as r + 00,  gives the leading-order terms for the stream 
function as 

r 1 
2x 2xr 

$( r ,  8,  t )  = -1n ( r )  + - [ A  cos 8+ Bsin 81 + O(l/rz), (2.17) 

where A and B are constants. The first term contains the effect of finite circulation, 
and the second term is a vortex dipole. 

2.2. The axisymmetric Burgers vortex 
When /3 = iy, the strain field is axisymmetric. Burgers (1948) obtained a steady, 
analytical solution to (2.10)-(2.13), for this case if r > 0 and y = constant: 

Equation (2.17) reduces here to 

(2.18) 

(2.19) 

This solution represents a balance between the action of viscous diffusion and 
vorticity intensification due to the stretching strain field. A radius for the Burgers 
vortex may be defined as 

4v 
aBV = (7) , (2.20) 
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2.3. Equivalent two-dimensional f i w  
The stretched vortex problem defined in $2.1 may be mapped to an equivalent fully 
two-dimensional flow using the rescaling transformation (Batchelor 1967 ; Lundgren 
1982; Giga & Kambe 1987) 

f l  
A(t) = y(t’)dt’, J, (2.21) 

7 = [ eA(t‘) dt’, (2.23) 

Q(g,O, 7) = w(r ,  8, t)  e-A(t), (2.24) 

where 6 is the rescaled radial coordinate, r is a stretched time variable and SZ is the 
corresponding vorticity in this new system. Applying (2.21)-(2.24) to (2.10) gives 

( 2 . 2 5 ~ )  

(2.25 b )  

(2.25 c) 

where (V,, 5) = (vr, v,) e-A/2 are the rescaled velocity components associated with the 
vorticity. Equation ( 2 . 2 5 ~ )  is a two-dimensional vorticity transport equation 
describing a vortex motion with vorticity 

which is subject to a two-dimensional, time-dependent uniform strain. When the 
strain is axisymmetric (6 = +y), Us vanishes giving strictly two-dimensional flow with 
zero fluid velocity a t  r = 00. 

2.4. Scaling 
Throughout this paper an overbar will be used to denote dimensional quantities. All 
other variables can be considered non-dimensional unless otherwise specified. A 
Reynolds number is defined as, 

(2.26) 
7 

R e = - .  
2ni7 

We set the length and time scales as 

(2.27) 

(2.28) 

The scalings ensure that an equilibrium Burgers vortex will have unit radius, for 
all values of circulation. Also the stretching timescale is set equal to that associated 
with viscous diffusion of vorticity. Hence the Reynolds number measures not only 
the strength of the convective forces relative to viscous forces, but also the relative 
magnitude of the vorticity-associated terms with respect to the strain terms: from 
(2.26)-(2.28) it follows that r / y  = nRe. 
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3. Numerical solution 

t,h formally as 
A combination of finite-difference and spectral methods is used. Represent w and 

$N-1 

n--$N 
w ( r , e , t )  = C dn(r,t)eine, (3.1) 

n--iN 

where re[O, 00)  and 8e[O,21c). The truncated Fourier series (3.1) and (3.2) are 
substjtuted into (2.10)-(2.13) to  obtain evolution equations for the coefficients hn 
and $n, n = -ip) . . .) A&- 1. There are two parts to  the calculation : (i) solution of the 
Poisson equation ; (ii) time advancement. 

3.1. Poisson equation 
Substituting (3.1) and (3.2) into (2.13) and invoking the (discrete) Fourier transform 
r&sults in N ordinary (uncoupled) differential equations for the complex variables 
+.,(r), n = -", ...,ip--l: 

(i) n = 0 :  

For the axisymmetric component of the vorticity field, 

From (2.16) and (3.1) we obtain 

r= w d A  = 2~ do(r)rdr .  I I: 
So when r+  0, it follows from (2.17) that  

(3.3) 

r 
+o(T)'zln ( r ) ,  r-+ m. (3.6) 

~ + ; w s o  = dO(4, (3.7) 

Since the velocity derived from w and not $ itself is required, we put f ioo  = --at,h0/ar 
into (3.4), giving 

dGo 1 

with boundary conditions, fie,(0) = 0, fio,(r -+ co) = 0. The formal solution of (3.7) is 

(ii) n = 1 :  

The n = 1 equation can be recast using the transformation t,hl = r $ ( r ) ,  giving 

d2$ d# r - + 3 -  = -dl(r). 
dr2 dr  (3.9) 
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From (2.17) and (3.6), $(a) = 0. Equation (3.9) was integrated from r = 0 with 
boundary conditions $ = 0, d$/dr = 0. The solution was then corrected by 
subtracting off $(co) to give the required boundary condition at  infinity. 

(iii) n > 2 :  

The boundary conditions are 

&,(r = 0) = 0, &,(r+ 00) = 0, (3.10) 

for all n > 2. Thus (3.3) can be solved as a standard two-point boundary-value 
problem. 

The radial equations were solved on a finite domain obtained by a coordinate 
mapping 

r = R tan (ng), (3.11) 

which maps r E [0,00) onto CE [O, t ) ,  where R is a parameter. The stretched equations 
were solved numerically using fourth-order finite differences. The n = 0 and n = 1 
equations can be integrated as ODE'S while for n 2 a pentadiagonal system results 
which can be solved directly in q(N) operations. Overall, the Poisson solver requires 
O(N2) operations. When the ~ , ,  n = -13, I&- 1, n =!= 0 are known the non-axi- 
symmetric velocity field is constructed from spectral O-differentration and fourth- 
order finite-differenced g-differentration. 

3.2. Time advancement 
Substituting (3.1) into (2.10), using (2.11) and (2.12) and taking the Fourier 
transform we obtain 

1 --B -(wrv,) --B -(wv8) 
r [R 1, [io 1, 

+ 
+~(2~-y)[(n+2)&,, ,-(n-2)oi,- ,] ,  n = -1 

- (2B- y )  - (r2&n-2) + 
8, ..., 'a-1, (3.12) 

2r [:r 

giving N equations, for the coefficients dn(r). Coordinate stretching is employed here 
also, but details are omitted in the interests of clarity. 

The boundary conditions for the equations (3.12) are 

dn(r = co) = 0, all n, (3.13a) 

dn(r = 0) = 0, n =!= 0, (3.13 b )  

dGo 
- ( r  = 0) = 0, 
dr  

n = 0. ( 3 . 1 3 ~ )  

The d, were advanced in time using a second-order explicit predictor. These values 
were then updated in a Crank-Nicolson, semi-implicit, two-point corrector scheme. 
The nonlinear terms were evaluated as the right-hand side of the linear problem 
resulting from the Crank-Nicolson formulation. The discretized approximations to 
the linear terms using five-point differentiation rules form a pentadiagonal matrix 
and can be inverted directly. The scheme gives updated values for dn(t+St) ,  
n = -1 a, . . . , I&- 1 ,  where St is the fixed time-step. At each implementation of the 
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FIGURE 1. Equilibrium shape of a strained vortex in a non-axisymmetric strain field ( y  = 4, 
p = 3). Re = r/2nv = 10. (a )  present lq,,,,,l = 1, IAol = 1; ( b )  Robinson & Saffman (1984). 

Crank-Nicdson scheme, the nonlinear terms in (3.12) were evaluated using velocity 
field information obtained from the Poisson solver with right-hand side given by the 
latcst &,(t+8t). This introduces iteration into the time advancement, in order to 
maintain stability with moderate 6t (see also Peace & Riley 1983). Generally 3 4  
iterations were required for convergence in the h,,(t+ 8t). 

3.3. Testing of code ; non-axisymmetric strained vortex 

A strong test requires a non-axisymmetric strain field which introduces the coupled 
terms in the time-advancement equations. The test used was the equilibrium strained 
vortex in a non-axisymmetric strain field (Robinson & Saffman 1984). Strain-field 
parameters are assigned values y = 4, p = 3 to correspond to Robinson & Saffman’s 
e = $ which is a measure of the anisotropy. Since v = 1, the only free parameter is 
the Reynolds number 

r r  
R e = I = I  (3.14) 

2RV 2R’ 

The non-axisymmetric equilibrium states were found by placing symmetric 
vortices a t  the centre of the strain field and allowing them to relax. Equilibrium was 
assumed when the fractional change in the error diagnostic max,+, ldn(t&.)1 was less 
than over several time-steps. A comparison with a result of Robinson & Saffman 
(Re = 10) is given in figure 1. By scaling the value of the maximum vorticity over the 
maximum for the same vortex in an axisymmetric strain field, a quantitative 
comparison can also be made (table 1 ) .  The agreement is good. 

In figure 2, for a fixed strain-field strength and geometry (e = $ in the notation of 
Robinson & Saffman), Re is varied from 0.1 to  160. Each frame shows the equilibrium 
state reached from the axisymmetric Burgers vortex initial condition. Since the 
viscosity and strain intensification are fixed for this series of flows, the Reynolds 
number can also be taken as a measure of the strength of inertial effects relative to 
those induced by the strain field and viscous diffusion. 

At very low Reynolds numbers (Re = 0 .1 , l )  the strain field dominates and the 
vortex is most distorted. The axis of elongation almost corresponds to the 0 = 6. 
direction, where the (z, y)-plane strain is a minimum, demonstrating that the vortex 
self-induction is only weakly active. As the Reynolds number increases (Re = 5,  lo), 
the axis of elongation slowly rotates and in each case assumes an orientation that 
appears to  represent a balance between strain and vortex induction. Eventually the 
vortex becomes so strong that the directional effects of the strain are overcome. 
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FIGURE 2. Equilibrium state of strained vortices in a non-axisymmetric strain field (y = 4,p = 3). 
Minimum contour (w,,,,( = Re/lO, intervals between contours are IAoi = Re/lO.  

Re 

0 
0.1 
1 
5 

10 
40 

100 
160 

% t / W M ( B V )  
- 

0.870 
0.872 
0.905 
0.953 
0.996 
0.999 
1 .ooo 

- 

0.95 

1 .oo 
- 

- 

TABLE 1.  Comparison between the maximum value of the equilibrium vorticity in a non- 
axisymmetric (0,) and axisymmetric (o,(BV)) strain field obtained here and by Robinson & 
Saffman (1984) (oaSx R & S). 

Vortex deformation is not evident on the scale of these plots. The resulting 
equilibrium resembles the result for a Burgers vortex in an axisymmetric strain field 
of strength y (see also table 1) .  This conclusion is consistent with the results of Lin 
& Corcos (1984) and Neu (1984b). 
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4. Merging of strained vortices 
The merging of an isolated pair of equal Burgers vortices was studied in 

considerable detail. Most events were considered in an axisymmetric strain field ; 
however, one case was run in which the strain field was non-axisymmetric. A list of 
the cases studied is given in table 2. 

4.1. Time-steps 
The approximate time-step chosen was, 6t % l / (N Re), where N is the number of grid 
points in both the fl- and &directions. Larger time-steps could be used if the number 
of iterations performed per time-step was increased. The optimum compromise 
involved four iterations with each step. Attempts to  improve the code took two 
paths : (i) Dealiasing was performed on the nonlinear convolution terms of the time- 
marching equation to  try to improve the stability of the solution method. It was 
believed that if aliasing errors were present, they may have restricted the size of the 
time-step that could be used. Dealiasing had no effect on the solution stability and 
was not used subsequently as it required significantly more computation than the 
aliased version. (ii)Symmetries present in the merging events were used to reduce by 
half the number of independent Fourier coefficents. 

For all merging events, the r< stretching parameter, (3.11), was fixed at R = 1.2. 

4.2. Initial conditions 
Initial conditions werc adopted of the form, 

where r = 2n Re. This is a superposition of two axisymmetric vorticity distributions 
each with circulation tr. If either distribution was centred a t  the origin i t  would 
correspond to an equilibrium solution. For most calculations, xo = 2 was used, since 
it was apparent that the later stages of merging were not strongly dependent on xo, 
provided xo > 1 (see figure 5 ) .  It is expected that the flow with initial conditions 
(4.1) will asymptotically relax towards an axisymmetric Burgers vortex with circu- 
lation r. 

4.3. Results of the merging events 
Figures 3-7 show ' snapshots ' of vorticity contours a t  sequential times during 
merging events for Re = r/27cv = 40 to 1280. At all Reynolds numbers the merging 
events show similar qualitative features. Initially all vortex pairs rotate about each 
other with an angular velocity which can be approximated using a point-vortex 
model. As the vortices rotate, their cores (or regions of maximum vorticity) spiral 
inwards, eventually merging into a single region of strong vorticity. During their 
approach, the cores rotate increasingly more rapidly, forming a region of differential 
rotation. On the leading edge of the vortex, the vorticity gradient itensifies. This 
band of high-gradient vorticity is stretched azimuthally by the vortex cores as they 
spiral inwards. Viscosity acts locally to diffuse the vorticity gradients on much 
shorter timescales than the global process of relaxation to a single axisymmetric 
Burgers vortex. 
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Re 
0.1 
1 
5 
10 
20 
40 
80 
160 
160 
320 
640 
1280 

B 
2 
2 
2 
2 
2 
2 
2 
2 
4 
2 
2 
2 

4 
1.2 
1.2 
1.2 
1.2 
1.2 
1 .o 
1 .o 
0.95 
0.8 
0.9 
0.14 
0.105 

Grid 

32' 
32' 
32' 
32' 
32' 
642 
64' 
128' 
1282 
128' 
128' 
256' 

TABLE 2. Parameters used for merging of two equal Burgers vortices, 
t ,  = simulation time, Re = r/2xv, y = 4. 

FIQURE 3. Merging of two like-signed vortices in an axisymmetric strain field (Re = r/2nv = 40). 
The minimum contour is lwminl = 1.0 and all contour intervals are IAwl = 2.0. 
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FIGURE 4. Merging of two like-signedvortices in an axisymmetric strain field (Re = r/2zv = 160). 
The minimum contour is Iq,J = 1.0 and all contour intervals are lAol = 9.0. 

Consider the following dimensionless timescales over which the global processes 

4.n2d2 2nd2 
act : 

(4.2) - 
t r = r - -  Re ' 

ty = 47-1 = 1, 

a2 
t = - = I ,  
" v  
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FIGURE 5. Merging of two like-signed vortices in an axisymmetric strain field (Re = r/2nv = 160). 
The minimum contour is Iumin( = 1.0 and all contour intervals are IAwl = 9.0. Initial separation 
d = 8. 

where the t,, t ,  and t ,  are the convective, straining and viscous timescales 
respectively, the latter associated with a vortex of radius a (see 2.20). The timescales 
t, and t ,  are fixed and only t, varies (inversely) with the Reynolds number. At 
R e  = 10,40 the convection timescale t, > 1, indicating that merging is controlled 
largely by viscosity and the strain field. The Re = 10 case in particular, shows viscous 
and strain effects moving the vorticity distribution towards the equilibrium solution, 
while experiencing relatively little interaction with the weak vorticity. The merging 
depicted in figure 3 at Re = 40, is qualitatively similar to the subharmonic vortex 
pairing event calculated by Lin & Corcos (1984) (their figure 20) following primary 
instability of a Burgers vortex layer. 

With increasing Reynolds number the vorticity changes its behaviour from an 
essentially passive scalar to play an active role in the dynamics of the evolution. 
When the Reynolds number Re = 160, (figure 4) t ,  < t,, tv and vorticity-related 
effects start to become appreciable. Regions of weaker vorticity are left behind the 
faster rotating and stronger cores, forming embryonic spiral arms. Vorticity contours 
in front of the cores bunch up, highlighting regions of higher vorticity gradient. 
These are stretched along the paths of the cores but are quickly diffused since here 
viscous effects are comparable with those associated with the vorticity. Enhancement 
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FIGURE 6. Merging of two like-signed vortices in an axisymmetric strain field (Re = I'/2xv = 640). 
The minimum contour is ~w,,,,,,~ = 3.0 and all contour intervals are (Awl = 30.0. 

of vorticity gradients helps viscosity to (locally) dominate the action of convection. 
The short arms also quickly diffuse to  form a single vortex of convex form. Contour 
densities increase between t = 0.6 and t = 0.95 in figure 4 indicating that the strain- 
field vortex intensification is not complete even though the vortex is circular. For the 
highest two Reynolds-number cases shown, Re = 640 (figure 6) and Re = 1280 (figure 
7),  t, 4 t,, t,, and the convective processes dominate the flow evolution. The same 
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FIGURE 7. Merging of two like-signed vortices in an axisymmetric strain field (Re = r/2zv = 1280). 
The minimum contour is Iwminl = 3.0 and all contour intervals are (Awl = 60.0. 

features described in the Re = 160 cases are present but are more highly developed. 
The strong gradient regions lengthen into thinner spiral bands before diffusing, as do 
the vortex arms. One effect which is not clear in the Re = 160 case is thinning of the 
spiral arms a t  their ‘shoulders’. Since the arms are being thrown off much more 
rapidly than the vorticity can diffuse, the vortieity in the arms should be nearly 
conserved, thus as the arms extend they become thinner at the shoulder as this is 
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where the extension occurs. It is interesting to note that in the later stages of the 
axisymmetrization, the arms appear to separate to some extent from the core of the 
vortex. For the flows of figures 6 and 7 ,  fractional changes in r, calculated as the area 
integral of w ,  remained constant to O( 

Figures 8 and 9 show vorticity plotted on radial cuts in the ( r ,  8)-plane at 19 = 0 (the 
positive z-axis) and 8 = in (the positive y-axis). At Re = 10 (not shown) the vorticity 
convects and diffuses to the final Burgers vortex form. The Re = 160 case (figure 8) 
illustrates a region of high vorticity gradient within the vortex core in the x-axis plot 
a t  t = 0.2. Near convergence to the Burgers vortex form occurred in all three cases 
Re = 10,40,160 within computed time. 

The finer arm structure in the Re = 1280 case (figure 9) can be seen a t  t = 0.06, 
where two oscillations can be seen in the z-axis plot. Earlier times in this merging 
event show the movement of the separate vortex cores towards each other to form 
a single, larger core. Although the vortex is all but axisymmetric (compare the x- and 
y-axis plots and see the final frames of figure 7) a t  the final time computed for this 
event ( t  = 0.105), the strain field clearly requires more time to  intensify the vorticity 
into its final equilibrium form. 

The highest-Reynolds-number merging events examined in this discussion 
qualitatively resemble the strictly two-dimensional vortex merging considered by 
Melander et al. (1987) and Melander, Zabusky & McWilliams (1988). They considered 
the merging of two vortices with compact support in a two-dimensional box with 
periodic boundary conditions. A spectral method was employed to solve the problem 
where no strain field was present. To simulate very high-Reynolds-number flows, 
they employed a hyperviscosity term in their governing equations. This allowed 
them to study mechanisms believed to be present in the inviscid limit of flows 
described by the Navier-Stokes equations. In  an inviscid fluid for two vortices not 
subject to a strain field, merging does not necessarily follow. Melander et al. give a 
maximum intercentroid distance of 

over computed times. 

d = 3.4(A/n)f ,  (4 .5)  

where A is the vortex area, for two  identical, piecewise-constant circular vortices if 
merging is to occur. 

For the problem currently being investigated, viscosity and strain-field strength 
are constant and linked through the scaling adopted ($2.4). These two quantities are 
finite and hence merging is guaranteed eventually, albeit on a timescale that may be 
large compared with t,if the intercentroid distance is initially large. This is also true, 
therefore, for the equivalent two-dimensional flow without a strain field, as defined 
in $2.3. Increasing the Reynolds number increases the vorticity relative to the two 
fixed effects. An inviscid limit to this event can be found equivalently by fixing the 
geometry for the initial condition and the strength of the vortices (each vortex is 
distributed as ar* e-'' about the points ( -  2,0), (2,0), where r* is some normalized 
value for the circulation) and sending both v and y to zero. 

This limit was considered using Jacobs' (1987) contour-dynamics code which 
employed eight nested constant-vorticity regions. The results a t  two equivalent 
times are shown in figure 10. The good qualitative agreement in the first comparison 
between the two simulations suggest that the Re = 1280 case gives a good 
approximation to  the inviscid limit for early times. As the vortices continue to 
merge, however, the cores in the viscous case rotate more rapidly (cf. t r / d 2  = 25) ,  
suggesting that some intensification has occurred by this stage. 
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FIGURE 8. Distribution of vorticity along radial cuts in the computational plane for the 
Re = r / 2 x v  = I60 merging event. The directions of the two radial lines are (a)  B = 0, (positive-2 
axis), (b )  B = &, (positive-y axis). H indicates asymptotic Burgers vortex. 
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FIGURE 9. Distribution of vorticity along radial cuts in the computational plane for the 
Re = f/2nv = 1280 merging event. The directions of the radial lines are (a, c )  0 = 0, (positive-r 
axis) ; (b ,  d )  B = in, (positive-y axis). H indicates asymptotic Burgers vortex. 

4.4. Energy spectra for homogeneous turbulence 
The results obtained in the merging events are used to calculate an energy spectrum 
for a model of isotropic turbulence in incompressible flow. Lundgren (1982) assumes 
that homogeneous turbulence within a box of dimension can be modelled using a 
collection of randomly distributed vortex tubes, each tube consisting of a relaxing 
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FIGURE 10. Comparison between the contour-dynamics code of Jacobs (1987) (b,  d )  and the 
present solution method (a, c). (a) r / ( 2 n v )  = 1280, tr/d2 = 12.5; ( b )  y = v = 0, t r / d 2  = 12.5; 
(c) r / 2 l t v  = 1280, t r / d 2  = 25; (d)  = v = 0, t r / d 2  = 25. 

vortex spiral resulting perhaps from the roll-up of a vortex sheet or the merging of 
two vortices. Returning to dimensional coordinates, let a ( ~ ,  f) be the vorticity 
distribution for a typical vortex tube: this may be a relaxing spiral or, as now, a 
representative merging event. Using the result that, for homogeneous turbulence, 
the instantaneous energy spectrum E ( k ,  i) can be related to the power spectrum of 
the vorticity distribution ,!?,,,,,(E, t) as 

(4.6) 

and replacing the ensemble average by a time integration (for statistically steady 
turbulence), Lundgren shows that E ( S ,  i) may be written as 

E(E, f) = E,,,(E, t ) / ( 2 P ) ,  

(4.7) 

i n  (4.6)-(4.8), J ,  is a Bessel function of the first kind, order-n, an is the nth coefficient 
in a Fourier series expansion for iS(r, 8, t ) ,  

- 
X(f) = exp ([:y(u) du) = eA@) = eyt, (4.9) 

lo is the assumed length of the vortex tube a t  the start of the event ( l ( f )  = loS(t)) ,  N, 
is the rate a t  which new vortex tubes are being created within the box (assumed 
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constant), t% is the wavenumber and t, is the duration of the vortex event. The choice 
of t, is somewhat arbitrary and will be discussed later. Equation (4.7) can be 
rewritten as 

where 

IrcN - -  E(S)  = U P ( k ) ,  
kL3 

The energy dissipation can also be calculated similarly as 

where 

Combining (4.10) and (4.12) then gives 
- -  6 P ( E )  E ( k )  = -- 

2kv M 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

It is usual to normalize E using a wavenumber representative of the dissipation 
range. Following Hinze (1975), we take 

(4.15) 

where f is the Kolmogorov microscale. The energy dissipation can be estimated by 
approximating Townsend’s (1951) assumption that the axial strain rate is 
proportional to the root-mean-square strain rate, and identifying this latter quantity 
with 7 in the present merging Burgers vortex model. Hence, 

(4.16) 

(Townsend takes 7 = [C/(15V)]i: the present approximation is slightly different for 
computational convenience) ; thus, 

kd = 4(&). (4.17) 

Putting K = E/Ld, and employing the scaling of $ 2 . 4 ,  equation (4.14) can be written 
as 

- 1  

(4.18) 

where P and M are the dimensionless quantities resulting from P and ik! respectively, 
or using (4.16) 

(4.19) -- P ( K )  
E V )  M K .  (-” ; - 8- 

If the vorticity distribution is a single Burgers vortex, then its spectrum is 

(4.20) 
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FIGURE 11. Energy spectra obtained from merging events, Re = r/2nv = 40,180,640,1280. 

For a vortex merging event E(K,  t,) was obtained by evaluating the integrals (4.1 1)  
and (4.13) using a time-step coarser than that employed in the numerical simulation. 
We note that t, is a free parameter. When t, + 00 the integrals for P and M go like 
exp (4t,) and the spectrum is asymptotic to (4.20). We have taken t, % t ,  for each Re 
(see (4.2)) on the assumption that a t  large Re the fine scales are generated inertially 
and have lifetimes of order t, a t  most. Figure 11 shows the calculat,ed spectra for four 
values of Re and figure 12 shows spectra calculated by omitting the axisymmetric 
term in (4.11). At small K the differences in E for Re = 40,160 and Re = 640,1280 can 
be attributed to t, z t, for the lower Re-values : the merging event has nearly reached 
its equilibrium form of figures 3 and 4. 

At lower Reynolds number (Re = 40,160) the dissipative range and the low-K 
range, where E goes like K-l, are adjacent. However, for the high-Reynolds-number 
cases (Re = 640,1280) a flattened portion of the spectrum is forming between the K-l 
and the dissipative regions. This region has not been properly resolved owing 
possibly to uncertainties in fixing t, and also to insufficiently high Re. The slope is not 
-8 as found by Lundgren, but then the vortex structure of the merging event is 
different from that of the Kaden Spiral : the latter contributes to the inertial range 
through many closely spaced and rolled up turns in a spiral band, while figure 7 
shows only a few turns. Our maximum Re may be too low. 

For comparison, figure 13 shows the well-known Heisenberg and Pao forms of the 
energy spectrum, which are respectively 

(4.21) 

(4.22) 

where the Kolmogorov constant A and the value of the dimensionless constant a in 
(4.21) have been taken as typical experimental values A = 1.70, a = 0.4 (Hinze 1975, 
Chapter 3). In  the dissipation range our calculations slightly favour Heisenberg’s K-? 
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FIQURE 12. Energy spectra from merging events without the axisymmetric component (I,,). 
Re = r/2nv = 40,160,640,1280. 

FIGURE 13. Energy spectra derived from merging events at Reynolds number 
Re = f/2nv = 1280 compared with models of Heisenberg (.  . . . . . ) and Pa0 (- - - -) 

form. The Heisenberg model was obtained assuming statistical independence of 
scales corresponding to large and small K ,  and this has been criticized in the 
literature. It is noted that the present result requires no such assumption since it is 
derived from a model based on a solution of the Navier-Stokes equations. 

5. Cancellation of strained vortices 
The cancellation of a pair of Burgers vortices of opposite sign is now discussed. 

Although the cancellation event produces less fine detail than the merging, 
simulation times required to produce near complete cancellation were longer. For 

10 F L M  205 



284 J .  D. Buntine and D. I .  Pullin 

P 

Re 

0.1 
1 
5 
10 
20 
40 
80 

160 

X 

X 

X 

4 8 16 

X 

X 

X 

X 

X 
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TABLE 3. Runs conducted for cancellation events in a strain field (y = 4), Re = r O / 2 z v ,  

this reason, the maximum Reynolds number that could reasonably be achieved was 
Re = 160. All calculations were performed on a 128’ grid. Table 3 summarizes the 
cases considered. 

5.1. Moving reference frame 

The self-convection of two opposite-signed vortices causes them to move away from 
their initial positions to regions of the grid where points are less dense. To overcome 
this problem, the reference frame in which the grid is fixed was moved with the 
vortices with the consequence that the strain-fieid centre effectively moved with 
respect to the coordinate origin. The coordinate frame moves with a non-constant 
velocity which is arbitrarily chosen as the instantaneous y-component of the 
vorticity generated velocity w,(t), a t  the vortex centre, defined using 

where A denotes the half-plane x < 0. For the moving reference frame in Cartesian 
coordinates, the strain field is 

us = --P(t) xi+ [P(t)-r(t)l (y-yc(t)).i+y(t) zk, (5.2) 

where yc is the y-displacement of the moving reference frame with respect to the 
frame of reference in which the velocity field at r + 00 has no spatially uniform 
component. The equation for yc is then, from (2.3), 

the solution of which is, with y,(O) = 0, 

y,(t) = e-(Y-P)t e(Y-P)t’U,(t’) dt’, s,‘ 
5.2. Initial conditions 

The initial vorticity distributions were of the form 

(5.4) 
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FIGURE 14. Cancellation of two opposite-signed vortices in an axisymmetric strain field, 
y = 4, /3 = 2, Re = r 0 / 2 x v  = 160. The minimum contour is I w , , , ~ ~ ~  = 5 and all contour intervals are 
[Awl = 15. 

where ro is now the circulation of each concentration of vorticity so that the 
Reynolds number here is based on the initial circulation of one vortex (Re = ro/27cv).  
The separation was again chosen to be xo = 2. Symmetry about x = 0 was not 
assumed. 

5.3.  Results of cancellation 
At low to moderate Re vorticity acts as a passive scalar, cancelling as the vortex 
centres are forced together by the strain. An example of merging in an axisymmetric 
strain field (p = 2) is shown in figure 14 a t  Re = 160. As Re is increased for the same 
strength of strain field, vorticity begins to play a more active role in the event. At 
Re = 160, /3 = 4 (figure 15) the vorticity is the more dominant feature, significant 
translation is undergone by the pair and large tails form. For the same Re = 160, but 
with y = 4, ,!I = 16 the strong strain in the x-direction forces the two vortices 
together. They become extremely elongated (figure 16) and cancellation occurs very 
rapidly. 

To study the cancellation event in more detail, a number of quantitative 
diagnostics were computed during the evolution. Examples can be seen in figures 17 

10-2 
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FIGURE 15. Cancellation of two opposite-signed vortices in a non-axisymmetric strain field, 
y = 4, /3 = 4, Re = r0 /27tv  = 160. The minimum contour is Iwmin( = 5 and all contour intervals are 
IAwl = 15. 

and 18. The first frame in each of these figures shows how the circulation in a half- 
plane for each pair varied with time (the total circulation was always zero). Figure 
17 shows the cancellation behaviour for two Burgers vortices to be independent of Re 
a t  fixed /3 = 2 in the calculated range 0.1 > Re > 160. Strong dependence on /3 was 
found. The extreme vortex elongation induced by the y-component of the strain a t  
large p with y fixed (e.g. figure 16) suggests that when /3 $ 1 the cancellation event 
may be modelled by approximating the vortices by shear layers with vorticity 
w = w ( x ,  t )  uniform in the y-direction. The vorticity transport equation may then be 
reduced to the one-dimensional heat equation by the transformation 

B(t) = P(t’)dt’, (5 .6)  

(5.7) 

(5.8) 

s, 
7 = [: ezB(t’) dt’, 

6 = x @ t ) ,  
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FIGURE 16. Cancellation of two opposite-signed vortices in a non-axisymmetric strain field, 
y = 4, /3 = 16, Re = T‘,/Zzv = 160. The minimum contour is I O J ~ , ~ ~  = 5 and all contour intervals are 
[Awl = 15. 

where A(t) is given by (2.21). Returning to dimensional coordinates and discarding 
the ‘overbars’ notation for dimensional variables, let wo(x) ,  wo( -x) = -wo(x)  be the 
initial w-distribution for the double shear layer. An analytic solution for this flow in 
the presence of a strain field like (2.4) has been given by Kambe (1984) as 

(5.10) 

We consider a strip of shear layer of initially unit length in the y-direction. 
Assuming constant /3 and y with p > 0, accounting for the y-stretching of the strip by 
a factor exp [(p- y )  t ]  in time t ,  and approximating 

x’wo(x’) dx‘ x 22, r,, 



288 J .  D .  Buntine and D. I .  Pullin 

1.2 - 1.2 

po 
P(0) 

r ( t ) -  
fo 

0.6 - 0.6 

I 

0 1.0 2.0 0 1 .o 2.0 
t 

a 

Re = 0.1 
40 
/ 160 

0 1 .o 
t 

Y" 

6 

2.0 0 1 .o 2.0 
t 

0 1 .o 2.0 
t 

FIGURE 17. Flow diagnostics for the cancellation events where p = 2, Re = 0.1,40,160. 

where xo is the initial shear-layer centroid, the circulation in the strip is 
asymptotically, when ,9t %- 1, 

(5.11) 

There is complete vorticity cancellation as t + co when p > 0. If ,9 < 0 the strain 
attenuates cancellation by convecting vorticity away from x = 0. When t+ 00 the 
residual circulation in x > 0 is then given by 

(5.12) 
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RGURE 18. Flow diagnostics for the cancellation events where p = 16, Re = 160. 

We note that (5.1 1) and (5.12) are independent of y :  straining in the direction of the 
vortex lines does not per se influence (asymptotically) vorticity cancellation. After 
non-dimensionalization and setting z,, = 2, equation (5.11) is shown plotted in figure 
19 along with the current cancellation results for Burgers vortices (y  = 4, /3 = 2,4,8,  
16). In all cases Re = 160. There is reasonable agreement even when p = ~ = 2 and 
the vortices are not sheet-like. 

Schatzle (1987) studied experimentally the collision between two vortex rings 
leading to vortex reconnection. Schatzle's figure 6.12 shows the decrease of 
circulation for each of the cores at the contact site, where a rapid cancellation of 
circulation for the two vortex rings occurs (taking a cut locally through the cores, the 
vorticity distributions are of opposite sign). Schatzle measures large rates of strain 
during the vortex cancellation event. Although the strain rates vary, a representative 
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FIGURE 19. Circulation r versus pt: -, present; ----, from Kambe (1984). 

valuc of B is 6 s-' (his figure 6.6). From (5.11) and using v = 0.01 em2 spl (water) 
and xo = 0.5 em, the time for the circulation to drop to 10% of its original value 
( T ' / f o  = 0.1), is t,, = 0.9 s. From Schatzle's figure 6.12, the observed time is of order 
1 s. We note that in the experiment, P exhibits both a temporal and a strong spatial 
variation which results from the three-dimensional dynamics of the reconnection/ 
cancellation event. This has not been modelled here, but appears to  be a central issue 
in the vortex reconnection phenomenon. 

5.4. Time-varying strain 
Our results can elucidate certain vortex flows with uniform but time-varying strain. 
Specifically, consider a flow with two-dimensional space, time and vorticity variables 
(a, i, d(i, i)) embbeded in a strain field (2.8) with non-constant strain rates 

p = a,/(t,--t3, (5.13) 

s = b , / ( t , - k  (5.14) 

where a,, b ,  are constants and to is a critical time. When a,  > 0 there is infinite 
stretching of vortex lines as 1 = Z o t ~ l / ( t o - ~ a l  when {+=to  from below. 

The transformation 

(5.15) 

(5.16) 

(5.17) 

maps the ($,i,G)-flow into a flow with corresponding variables ( x , t , w )  and with 

(5.18) 
constant strain rates 

P = @,-$)/ to .  (5.19) 

Y = (a1--1)/4V 

The (x, t ,  ")-flow is that studied here. 
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$iggia & Pumir (1988) performed a three-dimensional Biot-Savart simulation of 
a vortex tube with circular core of cross-sectional area assumed inversely 
proportional to  the local stretching of vortex lines. Their results show vortex-dipole 
formation and suggest pointwise collapse to infinite stretching in a finite time with 
vorticity-aligned strain like (5.13). For vortex-pair initial conditions (5.5) our results 
support (5.11) for the asymptotic (x, t ,  o)-flow when p > 0. This is not conclusive 
since our numerics do not span the whole (y,P)-plane, but the argument is 
strengthened if also p- y > 0, in which case each core will not remain nearly circular 
but the pair will tend to flatten into the elongated dipole as in figure 16. Given (5.1 l ) ,  
i t  follows from (5.15)-(5.19) that there will be complete vortex cancellation in the 
(a, i, &)-flow when i+ to  provided b, > $, independent of a ,  (i.e. 9) .  This will suppress 
the incipient inviscid singularity implied by (5.13): see also Meiron et al. (1988). The 
numerics of Siggia & Pumir indicate a,  = 1 +log terms for the vortex-tube evolution : 
b, is not given explicitly but Siggia & Pumir assume b, = !pl (axisymmetric strain) 
and here the hypothesis can be proven rigorously by a further transformation of the 
(x,t,w)-flow to an unstrained flow ($2.3). The essential result is that viscous 
cancellation and hence singularity suppression is controlled by b, alone. 

5 .5 .  Vortex dimensions and pressure 
Vortex dimensions were defined using 

(5.20) 

(5.21) 

where A is the left half-plane x < 0. For uniform vorticity in an elliptical region and 
zero vorticity outside, a and b are the ellipse semi-major and -minor axes. As the 
vortices came together, their aspect ratio a lb  decreased. Several of these calculations 
were halted before the cancellation had nearly completed owing to inaccuracies in 
computing a,  when low-level oscillations in w appeared at large Irl. These were 
associated with the limit of circumferential resolution when, at late time, and with 
large /3, the vortex-tail thickness was of order the circumferential grid spacing (e.g. 
figure 16). 

The distance that the vortex centroids moved vertically away from their initial 
position is given in the plot of yv versus time (figures 17 and 18), where 

~v = YC + Ymean. (5.22) 

In  (5.22) y, is given by (5.4) and yrnean is the y-centroid, located with respect to the 
moving axes. Although v, is estimated and used as the velocity at which the reference 
axes move, the vortex centroids tend to drift relative to these axes ; ymean measures 
this drift. 

The vortex core pressure p ,  is defined as the pressure a t  a grid point nearest the 
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vorticity extremum. This can be calculated either by solving an appropriate Poisson 
equation or, as is done here, by using the radial momentum equation, 

r2 ae 
---'+---'+-----'--v aZw i a v  i azv  i -_- 
ar2 r ar r2 a02 r2  

3% + [$7-{(2p--y) cos 28+ 7)  + y,(#?--y) sin 81 - 
ar 

(5.23) 

In (5.23), p* = p - p s , p  is the pressure at a general point in the flow, 

the density. p,* was calculated by integrating (5.23) along a radial line from r = co to 
the centre of the vortex core. At r +- co the 8-momentum equation gives 

p =-1 2pv2x2+(/?-y)2y2] is the pressure due to the strain field alone and p is 

P r  p*(r+  c o , B )  = --(2p--y)sin28. 
4K 

(5.24) 

When the total circulation r is non-zero this must be used as a boundary condition 
on p* at  r +  co to ensure that the computed pressure is independent of the path of 
integration. Since the core pressure was not calculated at the true w-extremum, but 
a t  the nearest grid point, there was some fluctuation in the calculated p ,  caused by 
discontinuous jumps in the selected grid-point position. This can be seen for example 
in figure 18. 

Moore & Saffman (1971) calculated the shape of steady finite-area vortices with 
uniform vorticity w in an inviscid fluid under an applied two-dimensional, irrotational 
strain field. Stable vortices were found if the ratio of the applied strain to the 
vorticity was less than 0.15. The vortices were elliptical with the ellipse principal 
axes aligned at 45" to those of the strain field. The pressure at the vortex centre can 
be calculated using the Bernoulli equation for a rotational fluid with constant 
vorticity, with the result (P. G. Saffman ; private communication) 

- w2a2b2 & =  
p 2(a2+b2) '  

(5.25) 

where a and b are the vortex semi-major and -minor axes respectively. At the vortex 
centre, p ,  = 0. To test (5.25) when applied to viscous, unsteady, non-discrete 
vortices, calculated P = p,* /p  were plotted using Re = 160 cancellation data for the 
/3 = 4,8,16 cases. The results are shown in figure 20 where w is estimated as 
w = maxg,jlw(i,j)l, the vorticity at the grid point with the largest magnitude of 
vorticity. This gives good agreement with (5.25). The pressure calculations that 
deviate most from the model are from the Re = 160, p = 16 event, which showed 
pressure fluctuation during its decay, for reasons discussed previously. 
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FIGURE 20. Vortex pressure: -, from Moore & Saffman (1971). Present results from cancelling 
vortices at Re = 160; a, /3 = 4 ;  0 ,  ,4 = 8; A, p = 16. w is taken as max6,jlw(i,j)l. 

6. Conclusion 
The merging of two Burgers vortices was studied for Reynolds numbers in the 

range Re = I‘/2nv = 10-1280. Convective effects were found to become more 
dominant as the Reynolds number increased. This was expected since the strength 
of viscosity and the strain intensification were fixed in the scaling adopted. 
Axisymmetrization of the vorticity distribution occurred over a time consistent with 
the convection timescale. Initial vortex separation was found to affect little the 
qualitative behaviour of a merging event. 

The results of the higher-Reynolds-number merging simulations were used to 
model the energy spectrum for homogeneous turbulence. At lower wavenumber the 
behaviour of the spectrum was found to be like k-l - a result of the Burgers-vortex 
basis of the model - while the highest wavenumber range (k/k, > 1) agreed well with 
Heisenberg’s kP7 law without the constraint that eddies on different scales be 
statistically independent. An unresolved region remains in the energy spectra for the 
two highest Reynolds number merging events (Re = 640,1280). 

Cancellation of two opposite-signed Burgers vortices over the Reynolds-number 
range R e  = 0.1-160 was also studied. For a constant value of the strain B in the 
direction joining the vortex centroids, the circulation about one vortex was found to 
decay approximately a4 @exp (-pt), independent of Reynolds number, in good 
agreement with an approximation based on Kambe’s (1984) solution describing the 
strain-induced collision of two vortex layers. The cancellation timescale is consistent 
with Schatzle’s (1987) measurements of strain-enhanced vortex cancellation during 
the collision between two vortex rings when a typical value o f p  is used, although we 
emphasize that Schatzle’s measured strain rates are not constant over the decay 
period. Calculated vortex-core pressures showed good agreement with a simple 
analytical result obtained from the inviscid uniform-vorticity model of Moore & 
Saffman (1971). 

Finally, since the dynamics of vortices embedded in an axisymmetric strain field 
can be mapped onto an equivalent two-dimensional flow without strain (§2.3), the 
present results for the merging and cancellation events are relevant to the evolution 
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of any flow with a similar initial vorticity field but with time-dependent axisymmetric 
strain /3(t) = $y(t).  The investigation of specific time-varying strain scenarios is one 
area for future study. 

Helpful discussions with Dr P. A. Jacobs and Professor P. G. Saffman are 
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